TTE UNIVERSITY OF SOUTH FLORIDA.

COMMON BRAIN TUMORS

Yarema Bezchlibnyk MD, PhD
 Assistant Professor of Neurosurgery

Morsani School of Medicine, University of South Florida

OVERVIEW

- To review the epidemiology, diagnosis, management, and prognosis of common brain tumors, including:
- Metastatic tumors
- Meningiomas
- Glial tumors
- High-grade astrocytomas/GBM
- Anaplastic gliomas (AA, AO, AOA)
- Low-grade gliomas (LGG)

EPIDEMIOLOGY OF BRAIN TUMORS

- Overall incidence of brain tumors
- ~21/100 000
- Metastases are the most common brain tumor seen clinically in adults
- $\sim 50 \%$ of brain fumors
- Meningiomas = $\sim 18 \%$
- Gliomas = ~12\%
- $\mathrm{GBM}=\sim 7 \%$
- Anaplastic and low-grade gliomas $=\sim 5 \%$
- Pituitary adenomas = ~7\%
- Schwanommas = ~5\%
- Other = ~8\%

METASTATIC BRAIN TUMORS

EPIDEMIOLOGY OF METASTATIC BRAIN TUMORS

- 98,000-170,000 new cases diagnosed each year in U.S.
- Peak age 50-70
- 25% of patients with systemic cancer have CNS metastasis on autopsy
- 50-80\% are multiple

TUMOR TYPE AND INCIDENCE/RISK OF BRAIN METS

TABLE 1.1. Influence of primary tumor type on the number of clinically detected brain metastases, disease progression, and survival time ${ }^{\text {a }}$

Primary tumor type	Total $(\%)$	Single metastasis $(\%)$	Multiple metastases $(\%)$	Diagnosis to metastases $(\mathbf{m o})$	Metastasis to death $(\mathbf{m o})$
Lung	40	48	52	$3-6$	4
Breast	17	49	51	40	4
Melanoma	11	49	51	31	5
Renal cell	6	56	44	28	6
Gastrointestinal	6	67	33	14	3
Uterine/vulvar	5	53	47	23	3
Unknown	5	70	30	<1	7
Ovarian	2	57	43	23	8
Bladder	2	64	36	15	3
Prostate	2	82	18	22	3
Testicular	2	55	45	15	4
Miscellaneous	4	65	47	16	3
Total	100	53	47	12	4

${ }^{a}$ From, Nusbaum ES, Djalilian HR, Cho KH, Hall WA: Brain metastases: Histology, multiplicity, surgery, and survival. Cancer 78:1781-1788, 1996 (26).

TABLE 1.2. Risk of brain metastases: Autopsy incidence by primary cancer ${ }^{a}$

Histology
$\%$ of patients

Testicular	46
Melanoma	40
Lung	21
Renal cell	21
Osteosarcoma	10
Breast	9
Head and neck	6
Cervix	5
Neuroblastoma	5
Ovarian	5
Gastric	0
Prostate	0

Prostate
${ }^{\text {a }}$ Adapted from Greenberg M: Cerebral metastases, in Greenberg M (ed): Handbook of Neurosurgery. New York, Thieme, 2001, pp 463-469 (16).

LOCATION OF BRAIN METASTASES

Most commonly found at the grey-white matter junction and superficial distal arterial fields

The distribution reflects the blood flow to different regions
80\% in cerebrum
15\% cerebellum
5\% brainstem

CLINICAL PRESENTATION

- $80 \%=$ Metachronous (>2 month after diagnosis of cancer)
- $20 \%=$ Precocious ($1^{\text {st }}$ sign of cancer) or Synchronous (identified at or around the time of the cancer diagnosis)
- Neurological symptoms may develop gradually or acutely
- Headache, alteration in cognitive function
- Other symptoms depending on location:
- Focal weakness, ataxia, gait disturbance, cranial nerve findings, hydrocephalus, headache
- 20% develop seizures
- 15% present with brain bleed

IMAGING

SL: 5.0 thk $/-3.5 \mathrm{sp}$
FOV: (75\%)
SP: - 43.1
S-65915
PP:HFS
APPLIED

AM: 512×192
RC:CP Head
RM(se1)
Tl:0
TR:600
TE:12
$\begin{array}{ll}{[P]} & \text { L:502 } \\ & \text { W:985 }\end{array}$

MANAGEMENT: OVERVIEW

- Look for primary cancer
- Stage the disease
- Precocious
- Biopsy or resection for tissue diagnosis
- Synchronous or metachronous
- Resection vs. SRS
- Radiation
- Biopsy \rightarrow SRS
- Resection \rightarrow SRS or WBRT
- Palliative WBRT

MANAGEMENT: SURGERY?

- Clear evidence for benefit of surgical resection in solitary accessible lesions in patients with good performance status.

Tumor Factors

- Less than 3 brain mets
- Surgically accessible (although condsider laser therapy)
- No leptomeningeal dissemination
- Favorable tumor histology
- Breast cancer (vs. RCC, melanoma)
- No progression of systemic tumor in last 3 months
- Radiosensitivity
- Most radiosensitive
- leukemia, Iymphoma, multiple myeloma, SCLC, germ-cell tumors
- Intermediate radiosensitivity
- breast, non-small-cell lung Ca (the two most common mets)
- Least radiosensitive
- melanoma, RCC, sarcoma, colon Ca

Patient Factors

- Life expectancy >3 months
- Karnofsky score >70 (i.e. independent)
- No contraindications for surgery
- Life-threatening mass effect from fumor

RPA class	KPS	Age	Systemic disease
I	≥ 70	65 or less	Not controlled
II	≥ 70	≥ 65	Controlled
III	<70	Any	Either

RPA II patients require careful consideration of likely duration of survival and operative risk.
RPA III patients have poorest prognosis and usually not chosen for surgery

MANAGEMENT: STEREOTACTIC RADIOSURGERY

- RS delivers a high dose of radiation in a single fraction to a target volume, destroying all the cells within a target boundary
- Dose depends on tumor size, location, and previous radiation treatments
- Maximum tolerable doses 24 Gy, 18 Gy, 15 Gy, for tumors less than $20 \mathrm{~mm}, 21$ to 30 mm , and 31 to 40 mm , respectively
- Control decreases with increasing tumor size

MANAGEMENT: STEREOTACTIC RADIOSURGERY

- Advantages:
- Surgery + WBRT vs. SRS alone
- No difference in median survival - 9.5 months (Sx + WBRT) vs. 10.3 months (SRS)
- Muacevic et al., 2007
- Can treat small, deep lesions (<5mm is best for SRS, not surgery)
- Fewer immediate post-op risks
- Shorter hospital stay
- SRS + vigilant F/U may be better vs. SRS + WBRT
- better median survival (15.2 months SRS alone vs. 5.7 months SRS + WBRT)
- better KPS (80 vs. 70)
- BUT less local and distant control,
- Disadvantages:
- No histological diagnosis
- Limited to ≤ 3 lesions $\leq 3 \mathrm{~cm}$
- Delayed resolution of symptoms
- Transient increased edema possibly requiring higher dose steroids or surgery

MANAGEMENT: WBRT

- 30 Gy in 10 fractions over 2 weeks

Tumor type	Complete response $(\%)$	Partial response $(\%)$
Small cell lung carcinoma	37	44
Breast cancer	35	30
Squamous cell carcinoma	25	31
Adenocarcinoma (nonbreast)	14	36
Renal cell carcinoma	0	46
Melanoma 24 35 All metastases a Adapted from, Nieder C, Berberich W, Schnabel K: Tumor-related prog- nostic factors for remission of brain metastases after radiotherapy. Int J Radiat Oncol Biol Phys 39:25-30, 1997 (55).		

- Complications:
- Acute: Nausea, vomiting, alopecia, hearing loss, skin reactions
- Late: Necrosis, personality and memory changes, cognifive deficits
- Provides symptomatic relief in a majority of patients
- $70-90 \%$ of patients with serious neurologic dysfunction
- 33\% of patients with moderate dysfunction
- Helps eliminate micrometastases
- The rate of new metastasis and/or local failure are better in SR + WBRT (28\%) than SR alone (69\%)
- Sneed, 1999
- RS boost after WBRT is better than WBRT alone for surgically unresectable single brain metastases

MANAGEMENT: PALLIATIVE WBRT

- Treatment of choice when:
- Metastases are too large, numerous, or disseminated for surgery
- Systemic disease is progressive/significant
- Patient is a poor surgical candidate
- i.e. median survival $=4-6$ months

PROGNOSIS

Strategy	Median OS (months)
No treatment	1
Medications alone	2
WBRT	$4-6$
Surgery	$7-9$
Surgery + WBRT/SRS	$10-14$
SRS	$6-14$

- 2 -year survival $=20 \%$
- Median independent functioning is about 1-2 months less than survival
- All patients dead by 21 months

MENINGIOMAS

OVERVIEW

- A slow-growing, usually benign ($\sim 90 \%$), extra-axial tumor that arises from the arachnoid layer of the meninges
- Meningiomas associated with greater risk of recurrence/aggressive growth include:
- Atypical meningiomas (57\%)
- Anaplastic meningiomas (1-3\%)

EPIDEMIOLOGY

Fig. 1 Age and gender-specific incidence rates (per 100,000 population) for meningioma in the United States (2002-2006) (from reference 4). The left Y-axis scale refers to the bar graphs. The ratio of female to male incidence is indicated by a diamond at each age group, and the axis for the ratio is along the right hand side of the figure. The peak ratio of 3.15 , female:male, is among the $35-44$ year age group

- Most common primary intracranial tumor ($\sim 35 \%$)
- $2-3 \%$ of population has at least 1 asymptomatic meningioma
- Multiple meningiomas occur in ~8\% of sporadic cases
- Increased use of imaging \rightarrow increased incidental discoveries
- Incidence peaks at 45 years of age
- <2\% occur in childhood
- Higher likelihood of malignancy in childhood meningiomas

RISK FACTORS: HORMONES

- Female:male = 1.8:1
- For spinal lesions 9:1
- Suggestion of association between hormones and meningiomas:
- Preference doesn't occur at extremes of life
- Highest ratio of 3.15:1 during peak reproductive years
- Meningiomas change in size during luteal phase/pregnancy
- In a series from Finland on 500 meningiomas
- 88% progesterone receptor +
- 40% estrogen receptor +
- 39% androgen receptor +

- Association between breast CA and meningiomas
- Epidemiologic measures of endogenous and exogenous hormones are not consistently associated with meningioma incidence
- Atypical and anaplastic meningiomas more common in men

ETIOLOGY: GENETICS

Table 13.03 Diagnostic criteria for NF2.

Definite NF2

1. Bilateral vestibular schwannomas; or
2. First-degree family relative with NF2 and either a) Unilateral vestibular schwannoma at <30 years; or
b) Any two of the following: meningioma, schwannoma, glioma, posterior subcapsular lens opacity.

Probable NF2

1. Unilateral vestibular schwannoma at <30 years and at least one of the following: meningioma, schwannoma, glioma, posterior subcapsular lens opacity; or
2. Multiple meningiomas and either
a) Unilateral vestibular schwannoma at <30 years; or
b) One of the following: schwannoma, glioma, posterior lens opacity.

- Neurofibromatosis 2 (NF2) - primary genetic risk factor
- multiple
- earlier in life
- all subtypes \rightarrow NO increase in frequency of atypical/anaplastic subtypes
- Loss of material from chromosome 22a (location of NF2 gene/gene suspected fo initiate meningioma growth)

ETIOLOGY: RADIATION

- Ionizing radiation - primary environmental risk factor
- Studies include atomic bomb survivors, Tinea Capitis Cohort
- 8 Gy radiation of scalp to treat tinea capitis \rightarrow life time risk of 2.3% for meningioma after latency of 35 yr
- Dental radiography?
- Cell phones?

Studies obtained in a 56-year-old woman who had undergone radiotherapy for tinea capitis at age 6 years.

PRESENTATION

- Average time to diagnosis in cases with known doses of ionizing radiation $\geq 20-30 \mathrm{yr}$
- Seizure = 50\%
- Asymptomatic = 10%

- Focal deficit is location dependent
- Olfactory groove - anosmia, papilledema, vision loss
- Suprasellar - asymmetric visual field loss
- Parasagittal - leg weakness
- Clivus - facial numbness/tingling, hearing loss
- CP angle - hearing loss, vertigo, tinnitus
- Foramen magnum - clockwise loss of lunction
- Ipsi arm \rightarrow ipsileg \rightarrow contra leg \rightarrow contra arm
- Pain from CN irritation / compression
- Raised ICP
- Spontaneous bleed (rare)

PATHOLOGY

Meningiomas with low risk of recurrence and aggressive growth:

Meningothelial meningioma
Fibrous (fibroblastic) meningioma
Transitional (mixed) meningioma
Psammomatous meningioma
Angiomatous meningioma
Microcystic meningioma
Secretory meningioma
Lymphoplasmacyte-rich meningioma
Metaplastic meningioma

WHO grade I WHO grade I

Meningiomas with greater likelihood of recurrence and/or aggressive behaviour:

Chordoid meningioma
Clear cell meningioma (intracranial)
Atypical meningioma
Papillary meningioma
Rhabdoid meningioma
Anaplastic (malignant) meningioma

WHO grade II
WHO grade II
WHO grade II
WHO grade III
WHO grade III WHO grade III

Meningiomas of any subtype or grade with high proliferation index and/or brain invasion

- In addition to histological subtype...
- WHO GRADE I
- Bland cytology
- WHO GRADE II
- Any 1 of the following 3
- ≥ 4 mitoses $/ 10 \mathrm{HPF}$ ($1 \mathrm{HPF}=0.16 \mathrm{~mm} 2$)
- Brain invasion or :
- Atypical cytology $=3$ or more of :
- Increased cellularity
- Small cells w/ high N/C ratio
- Prominent nucleoli
- Patternless sheet-like growth
- Foci of necrosis (no prior embolization)
- Also important:
- High MIB1 index;
- Cytological atypia w/macronuclei
- No progesterone receptors
- WHO GRADE III
- ≥ 20 mitoses / 10 HPF
- Anaplastic/ malignant cytology
- Obviously malignant cytology

MOLECULAR BIOLOGY

- Partial or complete deletion of chromosome 22q
- Oncogene overactivation
- Telomerase reactivation
- Progesterone receptor upregulation
- Arachnoidal cells
$\downarrow \quad$ [NF2 mutation, 22q loss]
- WHO I: meningioma
$\downarrow \quad[l o s s: 1 p, 6 q, 10 q, 14 q, 18 q$; gain: 1q, 9q, 12q, 15q, 17q, 20q]
- WHO II: atypical meningioma
$\downarrow \quad[l o s s: 6 q, 9 p, 10,14 q$; rare mutations: p53, PTEN]
- WHO III: anaplastic meningioma

PATHOLOGY AND RISK OF RECURRENCE

Meningiomas with low risk of recurrence and aggressive growth:

Meningothelial meningioma
Fibrous (fibroblastic) meningioma
Transitional (mixed) meningioma
Psammomatous meningioma
Angiomatous meningioma
Microcystic meningioma
Secretory meningioma
Lymphoplasmacyte-rich meningioma
Metaplastic meningioma

WHO grade I

Meningiomas with greater likelihood of recurrence and/or aggressive behaviour:
Chordoid meningioma
Clear cell meningioma (intracranial)
Atypical meningioma
Papillary meningioma
Rhabdoid meningioma
Anaplastic (malignant) meningioma

WHO grade II

WHO grade II
WHO grade II
WHO grade III
WHO grade III
WHO grade III
Meningiomas of any subtype or grade with high proliferation index and/or brain invasion

- WHO I: ~90\% of all meningiomas
- Low recurrence (7-25\%)
- Relatively nonaggressive growth
- WHO II: $5-7 \%$ of all cases
- Recurrence = 29-52\%
- WHO III: 1-3\% of all cases; incidence as low as 0.17/100 000 per year
- Recurrence $=50-94 \%$

MANAGEMENT:
 ASYMPTOMATIC MENINGIOMAS

- Incidental meningiomas with no brain edema or those presenting with seizures that are easily controlled medically \rightarrow can be managed expectantly w/ serial imaging
- Slower growth rate in asymptomatic meningiomas with calcifications on CT
- Of 63 cases followed for $>1 \mathrm{yr}, 68 \%$ showed no increase in size on average F/U 36.6 months
- Kuratsu et al., 2000
- Management:
- Obtain F/U imaging study 3-4 months after first study to R/O rapid progression
- Repeat imaging annually $\times 2-3 \mathrm{yr}$
- Intervention when ...
- Symptoms develop that cannot be controlled medically
- Significant continued growth on serial imaging

MANAGEMENT: SYMPTOMATIC MENINGIOMAS

- The decision to operate is based on
- Age
- More morbidity once >70 y.o.
- Accessibility of tumor
- Estimation of clinical benefit achievable by surgery
- Primary goal = complete removal of meningioma (incl. dural attachment/infiltrated bone)

RISK OF RECURRENCE AFTER SURGERY

Grade	Description	10 yr Recurrence
I	macroscopically complete removal, excision of dural attachment/removal of involved bone	10%
II	macroscopically complete removal, coagulation of dural attachment	20%
III	macroscopically complete removal, without resection or coag of dural attachment	30%
IV	partial removal	40%
V	decompression/biopsy	n / a

MANAGEMENT: STEREOTACTIC RADIOSURGERY

- Preferred treatment modality for management of wellcircumscribed/small/benign/intracranial meningiomas smaller than 3 cm/inaccessible to surgery
- In large series of 972 patients, SRS either as 1 st-line or at recurrence provided following rates of tumor growth control/regression:
- WHO grade I: 97%
- WHO grade II: 50\%
- WHO grade III: 17%
- Complications of SRS:
- 13\%
overall
- 8\% CN deficit
- 3% symptomatic parenchymal changes
- 1\% ICA stenosis
- Most common complication was trigeminal/eye movement abnormalities in cavernous sinus meningiomas

MANAGEMENT: RADIATION THERAPY

- Generally ineffective as primary modality of treatment
- Indications for focal XRT:
- Recurrence (after considering re-op)
- Atypical meningioma (even after GTR)
- Anaplastic meningioma (even after GTR)
- Downsides to XRT
- Side effects
- Case report of development of malignant astrocytoma after XRT used to treat meningioma

MANAGEMENT: CHEMOTHERAPY

- Not very effective
- Some modest efficacy shown for:
- Anti-progesterone (mifepristone = RU-486) - reduction in size of 30% of growing, recurrent meningiomas
- Hydroxyurea - has shown some shrinkage
- Avastin for higher grade tumors to decrease edema
- Generally reserved for tumours that progress/recur after surgery and XRT

PROGNOSIS

- 5 yr survival for patients with meningiomas = 91.3\%
- 40% for anaplastic or atypical meningioma
- Progression-free survival of benign meningiomas with total excision:
- $5 \mathrm{yr}=93 \%$
- $10 \mathrm{yr}=80 \%$
- $15 \mathrm{yr}=75 \%$
- Goldsmith \& McDermott, 2006
- Most important factor in prevention of recurrence = extent of surgical removal of tumor
- Other factors:
- High histological grading
- Papillary/hemangiopericytic morphology
- Large tumor size
- High mitotic index

POST-OPERATIVE FOLLOW UP

- Imaging
- 3-6 months after resection
$\rightarrow 6$ month intervals $\times 2 \mathrm{yr}$
\rightarrow Yearly
\rightarrow Every other year
- If atypical or malignant meningioma
- 3 month intervals x 1 yr
- Then same routine as for malignant brain tumors

GLIAL TUMORS

Low Grade Gliomas

Anaplastic Astrocytomas

High Grade Gliomas

GLIAL TUMORS: OVERVIEW

Astrocytic tumours

Pilocytic astrocytoma Pilomyxoid astrocytoma
Subependymal giant cell astrocytoma
Pleomorphic xanthoastrocytoma
Diffuse astrocytoma
Fibrillary astrocytoma
Gemistocytic astrocytoma
Protoplasmic astrocytoma
Anaplastic astrocytoma
Glioblastoma
Giant cell glioblastoma
Gliosarcoma
Gliomatosis cerebri
Oligodendroglial tumours
Oligodendroglioma
Anaplastic oligodendroglioma
Oligoastrocytic tumours
Oligoastrocytoma
Anaplastic oligoastrocytoma

WHO Grade	Age
I	$0-20$
II	$30-40$
III	$40-50$
IV	$45-65$

LOW GRADE GLIOMAS

WHO I	WHO II
subependymal giant cell pilocytic	diffuse astro/oligo/oligoastro
	pilomyxoid
	pleomorphic xanthoastrocytoma

Low grade diffuse infiltrating tumors that have a tendency towards anaplastic transformation

	Low Grade Gliomas
comprise most low grade gliomas in adults	astrocytoma (fibrillary or protoplastmic)
less frequent	
histologies	oligodendroglioma

EPIDEMIOLOGY: PILOCYTIC ASTROCYTOMA

- Slow growing, little tendency to progress to higher grade
- Most common glioma in children
- 10% of cerebral and 85% of cerebellar astrocytoma
- Present in first two decades of life
- Rare presentation after 50 years old
- No sex predilection
- Arise throughout neuroaxis, but preferred sites include optic nerve, optic chiasm/hypothalamus, thalamus and basal ganglia, cerebral hemispheres, cerebellum, brainstem (may appear intraventricular)
- Presentation depends on location

EPIDEMIOLOGY: LOW GRADE ASTROCYTOMA

- 5-7 per 100,000
- 25% of childhood brain tumors
- Slight male preponderance
- Biphasic age distribution
- First peak between 6 and 12 years old
- Second peak between third and fourth decades
- African Americans have higher risk of death (40\%) than non-Hispanic whites

EPIDEMIOLOGY: LOW GRADE OLIGOASTROCYTOMA

- Incidence of 0.1 per 100,000
- Numbers vary due to histological diagnosis varying significantly amount pathologists
- Majority arise in adults with peak incidence in third and fourth decades

EPIDEMIOLOGY: LOW GRADE OLIGODENDROGLIOMA

- Incidence of 0.3 per 100,000
- 4.2% of all primary brain tumors
- Majority arise in adults with peak incidence in fourth and fifth decades

EPIDEMIOLOGY: HIGH GRADE GLIOMA

- Most common primary malignant brain fumor in adults
- Peak incidence between $45-65$ years of age
- 35-45 - secondary GBM; 59-62 - primary GBM
- $3-5 / 100,000$ cases per year
- Male to female ratio 1.5:1
- Arise in the sub-cortical white matter; local invasion is via white matter as well
- Multi-focal/multicentric GBM:
- ≥ 2 foci of enhancing tissue separated by $>1 \mathrm{~cm}$
- ~ 2% at autopsy
- Gliomatosis cerebri:
- Involvement of ≥ 3 lobes with neoplastic astrocytes

ETIOLOGY

- Genetic:
- Syndromic (Li Fraumeni, Turcot-1, NF-1, multiple enchondromatosis)
- Familial
- Sporadic (likely most GBMs)
- Radiation:
- Children with RTX for ALL (22x risk), tinea capitis, CNS tumors (craniopharyngioma, pit adenoma, germinoma)

ETIOLOGY: PRIMARY VS. SECONDARY HIGH GRADE GLIOMA

- Most glioblastomas manifest rapidly de novo, without recognizable precursor lesions (primary glioblastoma)
- Secondary glioblastomas develop slowly from diffuse astrocytoma WHO grade Il or anaplastic astrocytoma (WHO grade III)

	Primary	Secondary
Mean Age	55 yrs	40 yrs
Proportion	90%	10%
Clinical course	Rapid	Progression of LGG
Genetics	EGFR PTEN	P53 IDH-1/2

PRESENTATION: LOW GRADE GLIOMAS

- 50-80\% present with seizure or are neurologically intact
- Headaches
- Acute changes may occur with hemorrhage, cystic expansion, or CSF obstruction
- Neurological manifestations depend on location
- Occur throughout the CNS
- Supratentorial - 2/3
- Frontaf lobes $1 / 3$, temporal lobes $1 / 3$, relative sparing of occipital lobes
- Seizures, increased intracranial pressure/mass effect, impaired cognitive function
- Infratentorial - 1/3
- Brainstem (50\% of brain stem "gliomas" are low-grade astrocytoma); pons and medưla in children/adolescents
- Hydrocephalus, cranial nerve deficits, weakness/sensory changes

PRESENTATION: HIGH GRADE GLIOMA

- Clinical history is typically <3 months

Presenting complaint	Incidence
Focal neurological deficit	38%
Seizures	32%
Headache	30%

Salcman M. Brain tumors. New York: Churchill Livingstone; 1995.
Glioblastoma and malignant astrocytoma; pp. 449-477.

IMAGING: PILOCYTIC ASTROCYTOMA

IMAGING

Astrocytoma

- Typically no calcifications

Oligodendroglioma

- Calcifications commonly present

NOTE: Imaging alone is not sufficient to predict tumour grade, as ~20\% of LGGs enhance with contrast, while $20-30 \%$ of HGGs ao not - it does not reveal anything about underlying vascularity

IMAGING: HIGH GRADE GLIOMA

PATHOLOGY: WHO GRADING

- Performed on the area of tumor with the highest degree of anaplasia

- GRADE 1
- Clear interface between tumor and surrounding brain tissue
- GRADE 2
- Absence of clear tumor interface
- Low mitotic activity (<3/10 hpf)
- Nuclear atypia:
- Hyperchromatasia and/or obvious variation in size and shape of nucleus
- Cellular pleomorphism:
- Variation in size and shape of cell
- Cellular proliferation
- GRADE 3
- Increased mitotic activity (>3/10 hpf)
- MIB1/Ki67 10\%
- NO necrosis, vascular proliferation
- GRADE 4 = at least one of:
- MIB1/Ki67 >10\%
- Endothelial proliferation:
- Vascular lumina are surrounded by "piled up" endothelial cells
- Pseudopallisading necrosis

Marker	Association
p53	tumor suppressor gene altered in most low-grade astrocytomas transforming to high grade
MDM2	negative regulator of p53; alterations occur early in low-grade gliomagenesis
p14ARF	cell-cycle regulator inhibiting MDM2; alterations occur early in low-grade gliomagenesis
PDGF	platelet-derived growth factor; typically associated w/ oligodendrogliomas
1p/19q codeletion	genetic signature of oligodendroglioma; combined loss in $50 \%-80 \%$ of all cases
MGMT	DNA repair protein; methylated MGMT predicts favorable LGG response to temozolomide
PTEN	tumor suppressor gene altered in LGGs at risk for transformation
PGDS	arachidonic acid metabolite; associated w/ LGG malignant progression \& poor survival
tenascin-C	extracellular matrix glycoprotein; potential marker of LGG invasiveness
IDH1	Krebs cycle enzyme gene; mutations associated w/ LGG astrocytoma histology
IDH2	Krebs cycle enzyme gene; mutation associated $w /$ LGG oligodendroglioma histology

MOLECULAR PATHOLOGY: ASTROCYTOMA

- IDH-1 (70-80\%)
- LGGs with IDH mutations have a shortened time to recurrence
- HOWEVER, even in recurrence the IDH-1 mutation confers a better prognosis
- median OS = 151 vs. 60 months for all grade II gliomas
- P53 (>60\%)
- the genetic hallmark of low grade diffuse astrocytomas
- the frequency of p53 mutations does not increase significantly with tumour progression to secondary GBM
- MGMT
- As with HGG, MGMT promotor methylation predicts shorter progression-free survival after surgery alone
- BUT with TMZ therapy = similar overall survival to diffuse astrocytomas without MGMT methylation
- EGFR/PTEN/Akt/mTOR
- more prevalent in primary GBM

Promoter methylation
$p 14^{\text {AFF }}$
p16KAa
RB1
MGMT
TIMP-3

> Primary glioblastoma

> Secondary glioblastoma

Marker platelet-derived growth factor; typically associated w/ oligodendrogliomas genetic signature of oligodendroglioma; combined loss in $50 \%-80 \%$ of all cases DNA repair protein; methylated MGMT predicts favorable LGG response to temozolomide tumor suppressor gene altered in LGGs at risk for transformation arachidonic acid metabolite; associated w/ LGG malignant progression \& poor survival extracellular matrix glycoprotein; potential marker of LGG invasiveness Krebs cycle enzyme gene; mutations associated w/ LGG astrocytoma histology Krebs cycle enzyme gene; mutation associated w/ LGG oligodendroglioma histology

MOLECULAR PATHOLOGY: OLGODENDROGLIOMA

- $1 p / 19 q$ codeletion (50-70\%)
- Identified via FISH: centromeres are red, should be same number of green telomeres / nuclei - if not, LOH
- 19q \rightarrow most frequent, 50-80\%
- $1 \mathrm{p} \rightarrow$ 2nd most frequent, 40-90\%
- more common in frontal, parietal, occipital lobe lesions vs. infrequent in diencephalic and insular and temporal lobe lesions
- associated with improved outcomes with chemo and RT+chemo
- ALL 1p/19q tumours should get chemotherapy
- PDGF/R overexpression without amplification
- P53 mutation is uncommon (10-15\%)
- Mutually exclusive with 1p/19q codeletion
- MGMT - no prognostic role in oligodendrogliomas

MANAGEMENT: PILOCYTIC ASTROCYTOMA

- Slow growing tumors, so...
- Observation vs. biopsy if tissue diagnosis required
- Surgery only for symptoms/rapid change in size/imaging
- Maximal safe surgical resection
- Invasion of brainstem or cranial nerves limit resection
- In tumors with a nodule with a true cyst excision of the nodule suffices
- Where the cyst wall is thick and enhances (false cyst) the wall must also be removed
- No radiation recommended due to slow growth incompletely resected tumors should be followed with serial imaging

MANAGEMENT : LOW GRADE GLIOMA

- Observation
- ...is an option in very carefully selected patients who choose not to have surgery initially

Patient

- <40 yo
- epilepsy only - responsive to AEDs
- neuro intact
- no papilledema

Imaging

- small lesion (<6 cm in max. diameter)
- doesn'† cross midline
- no enhancement
- NO mass effect
- Surgery alone
- In low risk patients (<3 RTOG RF) with GTR
- Surgery + XRT + Chemo
- In low risk patients with subtotal resection and high risk patients regardless of extent of resection

MANAGEMENT : SURGERY

- Surgical resection:
- Indications:
- Diagnosis - exclude masses mimicking glioma (e.g., brain abscess)
- Neurological deficit (focal or \uparrow ICP)
- Cytoreduction prior to adjuvant therapy
- Stratified for degree of resection, survival of patients with complete resections was longer in RPA classes IV and V; 17.7 vs . 12.9 months, and 13.7 vs. 10.4 months for complete vs. partial)
- Decrease steroid requirement.
- Stereotactic biopsy:
- For lesions that are deep, diffuse, eloquent area, multiple, or for patients that are too old or unwell
- Diagnostic rate >90\%
- 60% risk of hemorrhage (90% are silent, so 6% risk of clinically significant bleed)

MANAGEMENT : LOW GRADE GLIOMA

- XRT + chemo is the new standard of care for high risk (age >40 and/or STR) LGG

Figure 1: Biomarker-based approach to anaplastic glioma
ellow boxes indicate new standard practice. Blue boxes indicate practice needs
to be confirmed. $\mathrm{RT}=$ radiotherapy. $\mathrm{PC}=$ = procarbacine, lomustin, and vincristine.
RT/TMZ \rightarrow TMZ=radiotherapy plus temozolomide followed by temozolomide.
"ClinicalTrials.gov, number NCTOO626990. †Alternative options.

- RTOG 0424: First Phase II data to suggest TMZ+RT superior treatment in High RIsk-LGG
- Compared patients with high risk LGG ($\geqslant 3$ RTOG risk factors) treated with TMZ + XRT to XRT alone.
- 3-year OS rate: 73.1% ($65.3 \%-80.8 \%$) vs. 54% (P<.01)
- EORTC RND Phase III: Suggests similar outcome of TMZ alone vs. RT alone
- RTOG 9802: the addition of PCV to RT increased median PFS from 4.0 to 10.4 years, and median OS from 7.8 to 13.3 years
- This is new data on OS which was not available when the guidelines went out

MANAGEMENT : ADJUVANT THERAPY

- Stupp protocol:
- 60Gy total, given fractionated 5x/week for 6 weeks
- Delivered to gross tumour volume plus a $2-3 \mathrm{~cm}$ margin
- Given with concomitant temozolomide
- 75 mg / square meter of body-surface area / day, 7 days/week from the first to the last day of radiotherapy
- Then, after radiation finished, give 6 cycles of adjuvant temozolomide (150 to 200 mg per square meter for 5 days during each 28 -day cycle - basically for 1 working week/month for ~ 6 months).

	RT (n=286)	RT+TMZ ($\mathrm{n}=287$)
Progression- free survival	5 months	7.2 months
Median survival 2 year survival	12.1	14.6

MANAGEMENT: RECURRENCE OF HIGH GRADE GLIOMA

- <10\% of gliomas recur away from original site
- Distant recurrence is associated with IDH-1/2 wt status
- IDH-1/2 mutant tumours tend to recur locally
- Consider re-operation if:
- Long initial remission
- Major localized recurrence in surgically accessible area
- \uparrow ICP or focal deficit
- Reoperation can add 4-9 mths extra survival, but depends on:
- Grade (AA rather than GBM)
- Performance (KPS > 70)
- Frontal lobe location
- Long interval to recurrence (>1 year)
- GTR
- Consider Gliadel wafers OR novoTTF therapy as alternatives to chemo

PROGNOSIS: LOW GRADE GLIOMA

- May remain low-grade for many years, or may dedifferentiate into malignant tumors (in $\sim 70 \%$, most commonly older patients)
- Mean time interval = 4-5 yrs
- Many patients die within 10 yrs, although some die at <2 yrs and $\sim 25 \%$ of patients survive >20 yrs
- Median survival of WHO Grade 2 = 6-8 years (~ 5 yrs for astrocytoma, 9 yrs for oligdendroglioma)

BAD Prognostic facłors $=\geq 3$ of

- Patient:
- Age ≥ 40
- Pre-operative neurological deficit
- Imaging
- tumour size $\geq 6 \mathrm{~cm}$ max. diameter
- tumour crossing midline
- Pathology
- Astrocytoma

GOOD Prognostic factors

- Patient:
- Good pre-operative cognition (MMSE
- Imaging
- tumour size < 6 cm max. diameter
- Pathology
- Oligodendroglial (1p/19q; MGMT; IDH1/2)
- Surgery (RTOG)
- Gross Total Resection (vs. subtotal vs. Bx)

PROGNOSIS: HIGH GRADE GLIOMA

Stage	Characteristics	Median OS	1 year and 5 yr OS	
III	$<50 \mathrm{y}$ and KPS ≥ 90	17.1	70\%	14\%
IV	<50 y and KPS <90; $\geq 50 y$, KPS ≥ 70, resection, working	11.2	46\%	4\%
V	$\geq 50 \mathrm{y}$, KPS ≥ 70, resection, not working $\geq 50 \mathrm{y}$, KPS ≥ 70, biopsy only ≥ 50 y, KPS <70	7.5	28\%	0\%

- IDH 1 or 2 mutation:
- Longer OS and PFS regardless of grade
- MGMT promoter methylation:
- Repair protein that removes promutagenic alkyl groups from DNA, thereby protecting cells against alkylating agents (i.e. Temozolomide)
- Methylation = loss of MGMT expression = deficient repair
- Works best patients with wt IDH-1/2)

B Gliomas Classified According to Molecular Subtype

Genetics	Classification	Median OS (yrs)
IDH+/p53-/lp19q+	Oligodendroglioma	8
IDH+/p53-/1p19q-	Astrocytoma	6.3
IDH+/p53+/lp19q-	Astrocytoma/ Secondary GBM	2.1
IDH-/p53-/lp19q-	Astrocytoma	1.7
IHD-/p53+/lp19q-	Primary GBM	1.1

