Sequelae of Pregnancy Complications Preeclampsia Peripartum Cardiomyopathy Amniotic Fluid Embolism

John C. Smulian, MD, MPH B.L. Stalnacker Professor Chair, Department of Obstetrics and Gynecology University of Florida College of Medicine

Objectives

- Discuss selected serious pregnancy complications with major clinical sequelae
 - -Preeclampsia
 - -Peripartum cardiomyopathy
 - -Amniotic fluid embolism

Obstetric ICU Admissions Indications

21,639 patients from 50 studies

–#1: Hemorrhage	28.4%

- -<u>#2: HTN diseases 26.6%</u>
- -#3: Sepsis/Infection 8.4%

<i>—#4: Cardiac</i>	7.8%

–<u>#5: Pulmonary</u> 5.1%

Ananth CV, Smulian JC. Epidemiology of Critical Illness in Pregnancy. In: Critical Care Obstetrics. 2017

Obstetric ICU Mortality Causes

 536 patients from 42 	studies
– <u>#1: HTN diseases</u>	<u>20.0%</u>
-#2: Hemorrhage	19.6%
-#3: Sepsis/Infection	14.9%
– <u>#4: Pulmonary</u>	<u>12.1%</u>
— <u>#5: Cardiac</u>	11.6%

Ananth CV, Smulian JC. Epidemiology of Critical Illness in Pregnancy. In: Critical Care Obstetrics. 2017

Preeclampsia Epidemiology

- 3-8% of pregnancies
- >80,000/yr maternal deaths worldwide
 - >16% of all maternal deaths (1 PE death every 7 min)
- #7 cause of maternal death in US
 - 1 of 11 maternal deaths (2006-10)
- #3 cause of fetal death in US
 - >5% of US fetal deaths >20 wks
- US hospitalizations (2005-09) \$2.2 billion
 - 3.8% of delivery hosp (ave LOS 4 days)
 - 3.9% of non-delivery hosp (ave LOS 3 days)

Ananth CV, Smulian JC. Epidemiology of Critical Illness in Pregnancy. In: Critical Care Obstetrics. 2017

Preeclampsia Complications

- CV Severe HTN, pulmonary edema
- Renal Oliguria, renal failure
- Heme Hemolysis, thrombocytopenia, DIC
- Neuro Sz, cerebral edema, hemorrhage, cortical blindness
- Hepatic Dysfunction, rupture
- Placental Abruption, IUGR, fetal distress, IUFD
- Major cause of preterm birth
 - 15-20% of PTB burden

Gestational Hypertensive Disease Classification

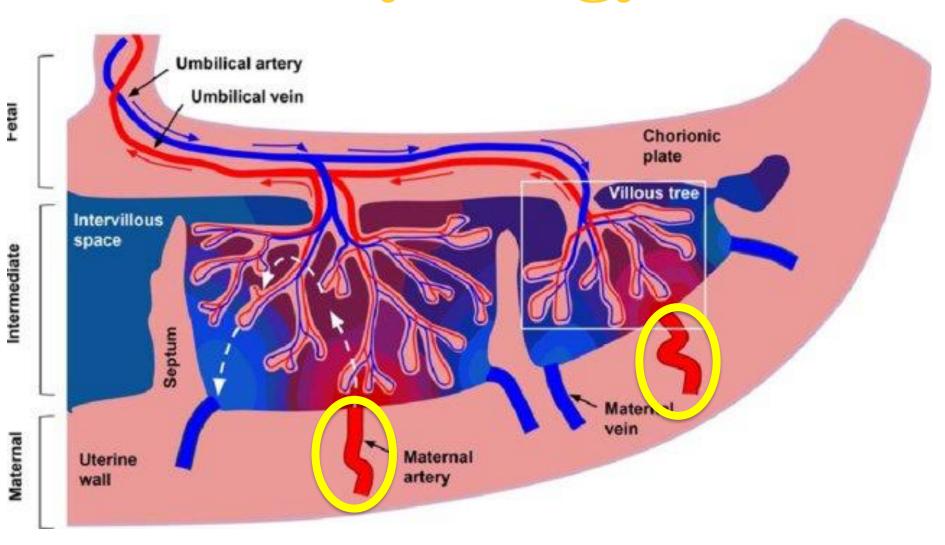
- Only 4 Categories with fuzzy boundaries
 - Preeclampsia-eclampsia
 - Chronic hypertension (any cause)
 - -Chronic hypertension with superimposed preeclampsia
 - -Gestational hypertension

Working group Report on High Blood Pressure in Pregnancy-NIH 2000, ACOG Task Force 2013, ACOG Practice Bulletin 2019

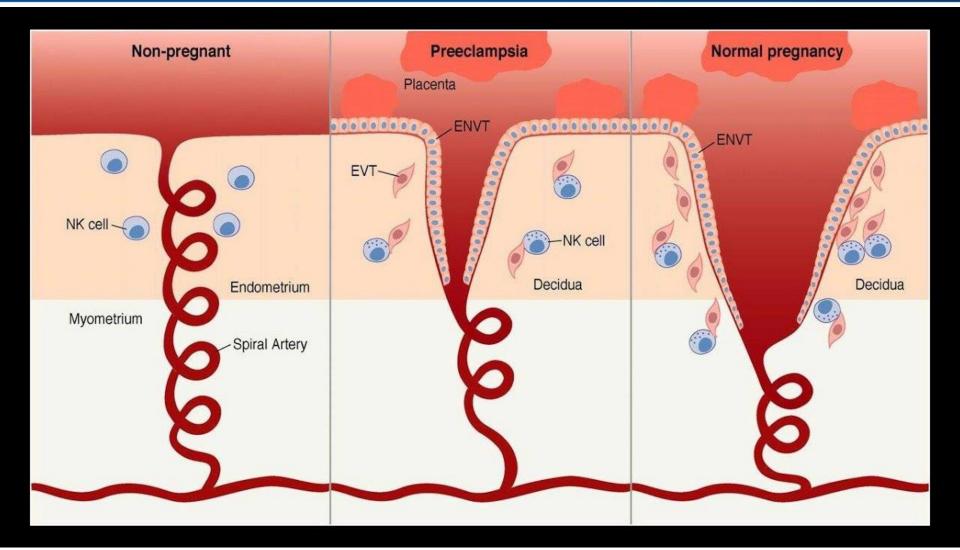
Gestational Hypertensive Disease

- Diagnosis and severity
 - -BP
 - -Proteinuria
 - -Signs and symptoms
 - -Laboratory

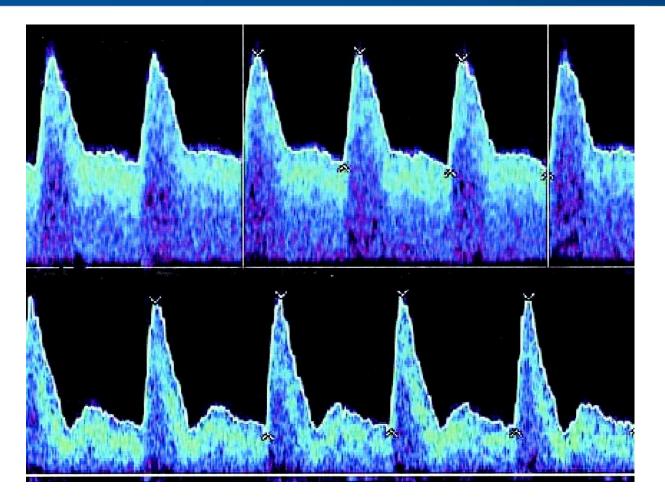
Working group Report on High Blood Pressure in Pregnancy-NIH 2000, ACOG Task Force 2013, ACOG Practice Bulletin 2019


Gestational Hypertensive Disease

- Preeclampsia is a <u>syndrome</u> that requires abnormal placentation
 - -Older attempts at definitions have used "arbitrarily" selected markers rather than changes that are important pathophysiologically


Shift in Approach

- Preeclampsia/eclampsia:
 - Does NOT respect BP or proteinuria "criteria"
 - Is the result of a physiologic process
 - Is variable in presentation and progression
 - Is challenging for predicting complications
 - Is easy to underestimate clinical impact
 - Is increasingly recognized as a <u>sentinel</u> event for future health issues


Preeclampsia Physiology

Spiral Artery Conversion

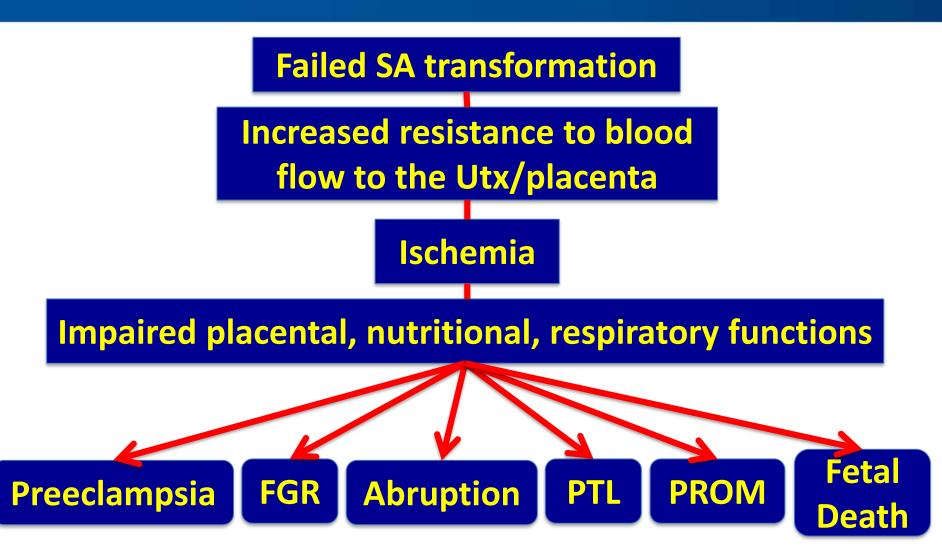
Ultrasound Doppler Spectrum of Uterine Artery Blood Velocity.

Pietryga M et al. Circulation 2005;112:2496-2500 Copyright © American Heart Association

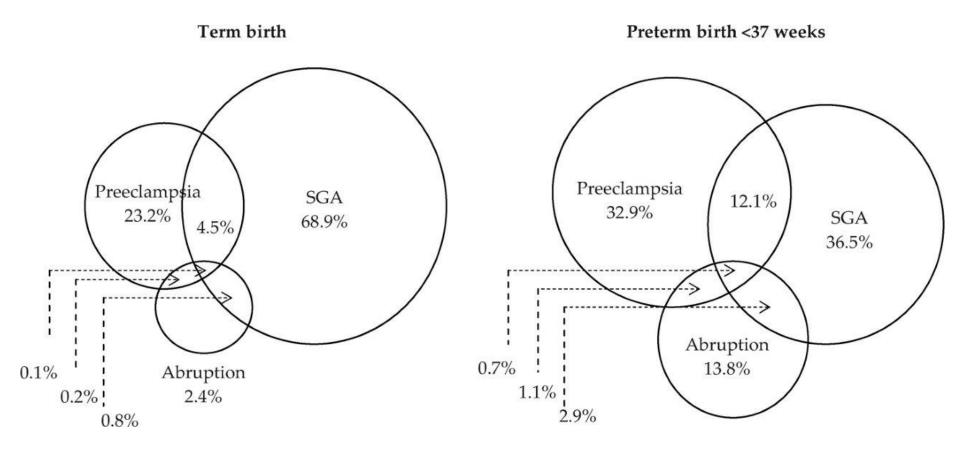
Vascular Angiogenesis

- VEGF (vascular endothelial growth factor)
 - Increases placental angiogenesis
 - Increases vasodilation (NO & prostacyclin)
- PIGF (placental growth factor)
 - Increases placental angiogenesis
 - Increases vasodilation
- sFlt-1 (soluble VEGF receptor)
 - Binds VEGF to prevent angiogenic activity
 - Antagonizes PIGF (placental growth factor)
- Soluble endoglin
 - Antagonizes angiogenesis as TGF receptor

sFlt and PLGF at 21-32 wks by PE Status and Severity



Preeclampsia Stages


- First stage Deficient placentation
 - Failed spiral artery remodeling
 - Shift of low pressure flow to higher pressure pulsatile flow
 - Villous injury (ischemia-reperfusion)
 - Secretion of factors leading to clinical preeclampsia
- Second stage Systemic vascular inflammation
 - Endothelial activation
 - Systemic inflammatory network (leukocyte/complement activation, acute phase response, abn coagulation function, insulin resistance, hyperlipidemia)
 - Clinical presentations
- Stage extent = clinical spectrum

Redman WG, Staff AC. AJOG 2015;213:S9-11.

Failure of Spiral Artery Transformation Beyond Preeclampsia

Spectrum of Ischemic Placental Disease by Gestational Age

Ananth CV, Smulian JC, Vintzileos AM. J Matern Fetal Neonatal Med. 2010;23:887-93

Preeclampsia Sequelae

- Maternal
 - -Occurrence/recurrence
 - Cardiovascular
 - Renal
 - Mortality
- Fetal
 - Preterm birth
 - FGR
 - Metabolic/CV dysfunction

Prediction Approaches

Genomic/proteomics/metabolomics				
Uterine artery Doppler	PIGF			
PAPP-A Clinical risk	factors			
sFLT Inhibin	PA sENG			
VGEF	ISAFP			
A-Disintegrin	Uric acid			
Roll-over test Placental Pr	rotein 13			
Thrombophilias Met	alloprotease-12			

Risk Factors (selected)

- Preeclampsia in a previous pregnancy
- Nulliparity
- Age >40 years or <18 years
- Family history of preeclampsia
- Chronic hypertension
- Chronic renal disease
- Antiphospholipid antibody syndrome or inherited thrombophilia
- Vascular or connective tissue disease
- Diabetes mellitus (pregestational and gestational)
- High body mass index
- Race
- Unexplained fetal growth restriction (FGR)
- Woman herself was small for gestational age
- FGR, abruptio placentae, or fetal demise in a previous pregnancy

Preeclampsia Prediction

- Clinical risk factors: modestly helpful
 - Sensitivity 37% for early onset PE
 - Sensitivity 29% for late onset PE
 - FPR of 5-15%
- Combined (serum free PIGF, PAPP-A, uterine artery Doppler PI, MAP, BMI, medical and obstetrical histories)
 - 76% sensitivity for preterm preeclampsia
 - 38% sensitivity for <u>term</u> preeclampsia
 - 10% screen positive rate

Recurrence Risk

1st preg	NL	Gest HTN	PE/ecl	CHTN	Superimp PE	All
Gest Htn	30%	47%	5%	16%	2.3%	70%
PE/eclampsia	42%	34%	11%	11%	2%	58%
CHTN	12%	35%	3%	46%	5%	88%
Superimp PE	6%	29%	12%	41%	12%	94%
Total	27%	41%	6%	23%	3%	73%

Recurrence of hypertensive disorder in 2nd pregnancy Hjartardottir, et al AJOG, 194, 916-20

Strategies Without Prevention Benefit

- Proper prenatal care
- Frequent visits + home rest
- Low-salt diet
- High protein diet
- High calcium diet
- High vitamin C and E diet
- Nutritional supplements
 - Mg
 - Zinc
 - Folate
 - Selenium ?

- Diuretics
 - Antihypertensives
 - Meta-analysis
 - 9 trials, >7000 subjects
 - Decreases BP and edema,
 NOT preeclampsia
- Antithrombotic agents
 - Dipyridamole
- Nitric oxide donors
- LMWH (enoxaparin)

- Initial trial in 1979 had benefit, 30+ since then.
- Appears safe (anomalies, maternal/fetal/neonatal physiology, homeostasis)

•	Askie,	et al.	mega	analysis	(N=32,000,	31 RCTs)
---	--------	--------	------	----------	------------	----------

Prevention	NNT
Preeclampsia	114
Perinatal mortality	333
SGA	167
PTB <34 weeks	143

Prevention

USPSTF - 81 mg/d *Use if 1 high risk factor

****Consider if several** moderate risk factors

*1 – Prior PE, multiples, chronic htn, types 1 and 2 DM, renal Dz, autoimmune Dz **≥2 – Nulliparity, BMI >30, FHx of PE, AA/low SES, ≥35 y/o, prior **IUGR/SGA/adverse** outcome/long pregnancy ~30% reduction in recurrent preeclampsia after

USPSTF quidelines published

Prophylaxis-ASA

• ASPRE Trial

- "Combined multi-marker screening and randomized patient treatment with Aspirin for evidence-based preeclampsia prevention"
- Multimarker screening
- 11-13 6/7 weeks
- ASA 150 mg versus placebo daily

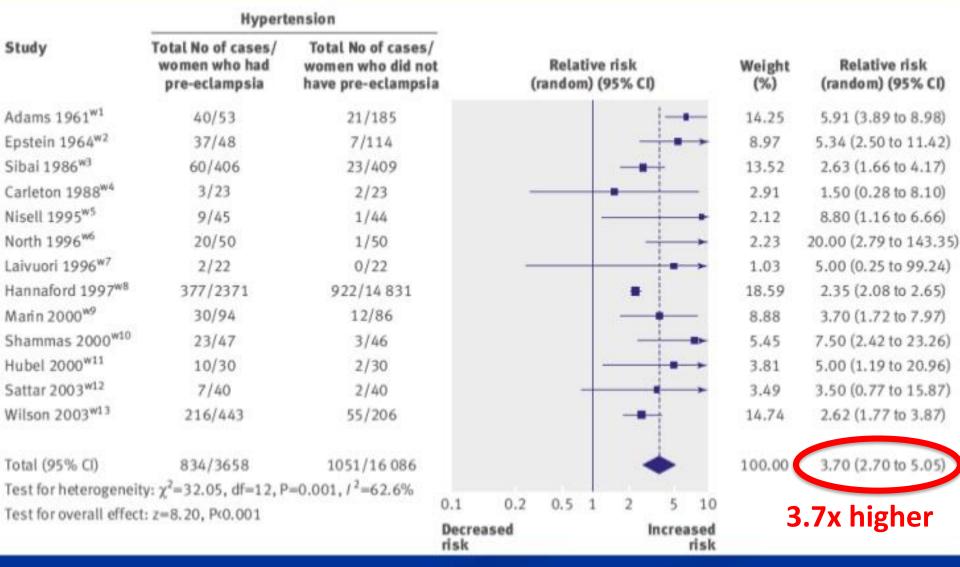
Rolnik DL, et al. Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. NEJM;2017:377:613-22.

Prophylaxis-ASA

- ASPRE Trial
- <37 weeks preeclampsia: 1.6% vs 4.3%
 - OR 0.38 (CI: 0.2, 0.74)
- <34 week outcomes</p>
 - Preeclampsia: 0.4% vs 1.8% OR 0.18 (CI: 0.03, 1.03)
 - SGA: 0.9% vs 1.7%
 - SAB/IUFD no PE: 1.8% vs 2.3%
- OR 0.53 (CI: 0.16, 1.77)
- OR 0.78 (CI: 0.31, 1.95)
- Abruption: 0.1% vs 0.4% OR 0.36 (CI: 0.02, 7.14)
- >37 weeks preeclampsia: 6.6% vs 7.2%
 - OR 0.95 (CI: 0.57, 1.57)

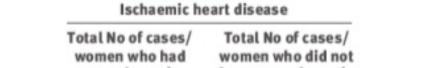
Rolnik DL, et al. Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. NEJM;2017:377:613-22.

- Additional analyses
 - Benefit consistent across all medical Hx,
 OB Hx and country subgroups
 - –≥90% compliance = higher benefit
 - OR: 0.24 (0.09, 0.65)
 - -Benefit not detected with chronic HTN


Later-Life Cardiovascular Dz

- Sentinal event for CV disease
 - Mild RR 2.0
 - Moderate RR 3.6
 - -Severe RR 5.4
- ACOG Task Force (quality of evidence: Low)

Consider <u>lifestyle modification</u> (healthy weight, physical activity, not smoking) and early evaluation for the highest risk women


- If preterm or recurrent preeclampsia
 - Yearly BPs, lipids, fasting blood glucose, BMI

Preeclampsia and risk of HTN

Reference: Bellamy et al. Pre-eclampsia and risk of cardiovascular disease and cancer later in life: systematic review and metaanalysis. BMJ 2007;335;974.

Preeclampsia and risk of CVD

Study

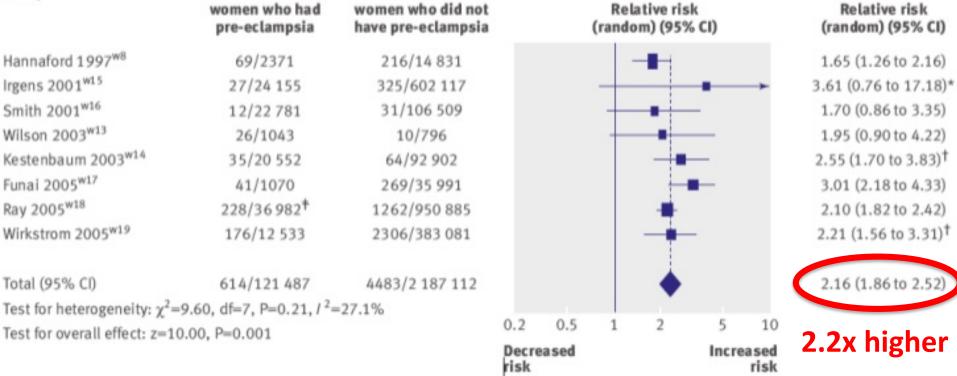


Fig 1 | Pre-eclampsia and risk of fatal and non-fatal ischaemic heart disease events in later life. *Early and late pre-eclampsia combined (see table 2 on bmj.com). †Mild and severe pre-eclampsia combined (see table 2 on bmj.com). ‡All maternal placental syndromes

Reference: Bellamy et al. Pre-eclampsia and risk of cardiovascular disease and cancer later in life: sytematic review and metaanalysis. BMJ 2007;335;974.

Preeclampsia and risk of Stroke and DVT.

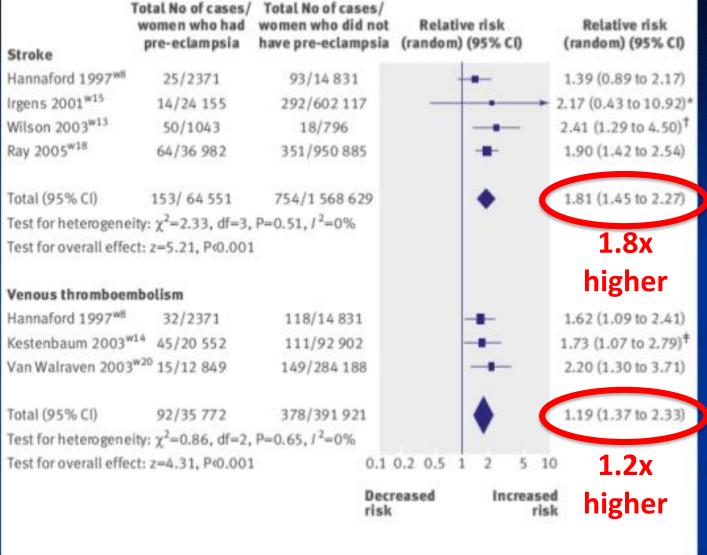
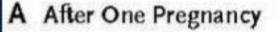


Fig 5 | Pre-eclampsia and risk of fatal and non-fatal stroke and thromboembolism in later life. *Early and later pre-eclampsia combined. †Fatal and non-fatal stroke combined. ‡Mild and severe pre-eclampsia combined

Reference: Bellamy et al. Pre-eclampsia and risk of cardiovascular disease and cancer later in life: sytematic review and metaanalysis. BMJ 2007;335;974.


Preeclampsia and risk of having a kidney biopsy later in life

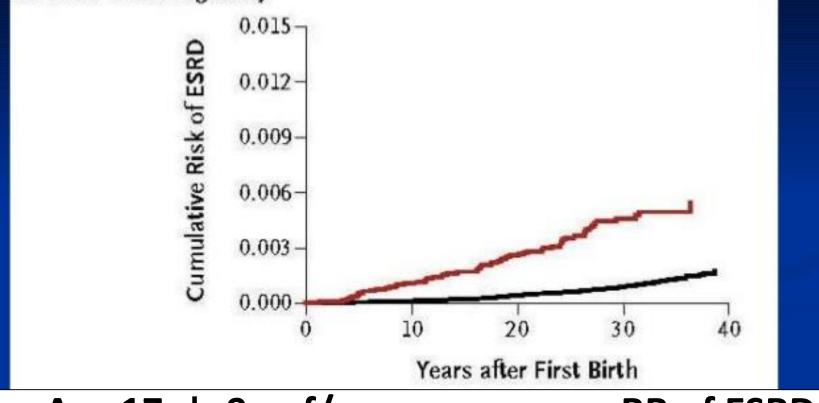
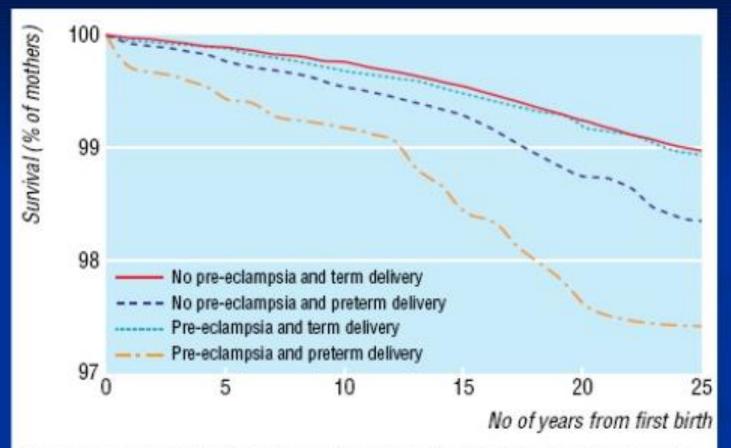


Figure 1. Cumulative risk for having a kidney biopsy according to pregnancy-related variables. Norway, childbirths 1967 to 1998 and kidney biopsies 1988 to 2002.

Reference: Vikse et al. Adverse perinatal outcome and later kidney biopsy in the mother. J Am Soc Nephrol. 2006 Mar;17(3):837-45.

Cumulative risk of ESRD



Ave $17 \pm 9 \text{ yr f/u}$

- Preeclampsia 1st pregnancy
- Preeclampsia 2nd pregnancy
- Preeclampsia ≥2 pregnancies

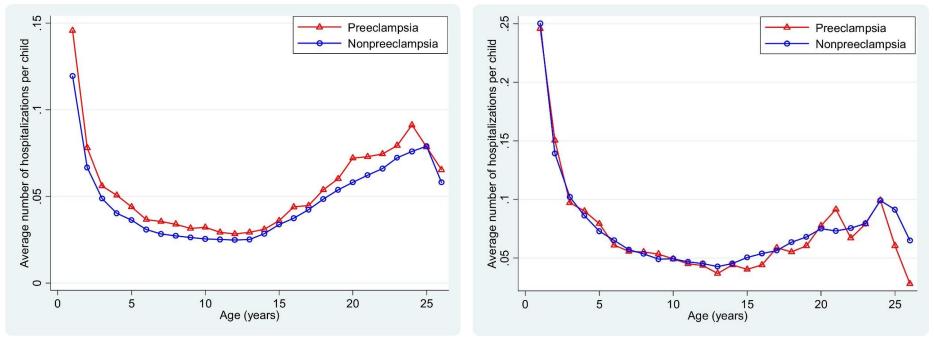
- <u>RR of ESRD</u>
 - 3.1x
- 5.3x
 - 40.0
 - **10.9**x

Preeclampsia and long term mortality

Long term survival of mothers after their first delivery, according to whether they had pre-eclampsia and gestational age of baby at birth (term=37 weeks or more)

Reference: Irgens et al. Long term mortality of mothers and fathers after preeclampsia: population based cohort study. BMJ. 2001 Nov 24;323(7323):1213-7.

Status of Interval Care


- In 2011, AHA added preeclampsia, pregnancy-induced hypertension, and gestational diabetes as evidencebased risk factors in guidelines to classification of CVD risk in women (Mosca et al., 2011).
- Many providers are unaware of sex-specific CVD risk factors or preventive strategies tailored for women (<u>Ehrenthal et al., 2013</u>).
- Only 9% of internists and 38% of OBGYNs provided CV risk reduction counseling to women with a history of preeclampsia. <u>Young, Hacker, and Rana (2012)</u>

Status of Interval Care

 Recent AHA guidelines (2014) for prevention of stroke in women reported that 18.2% of women with a history of preeclampsia had a cardiovascular event in the 10 years following the birth of an affected pregnancy compared to 1.7% of women with uncomplicated pregnancies (Bushnell et al., 2014).

Ave Hospitalizations per Child Born Preterm and Term

1.6 million births 1978-2004, Denmark, Up to 27 years follow-up

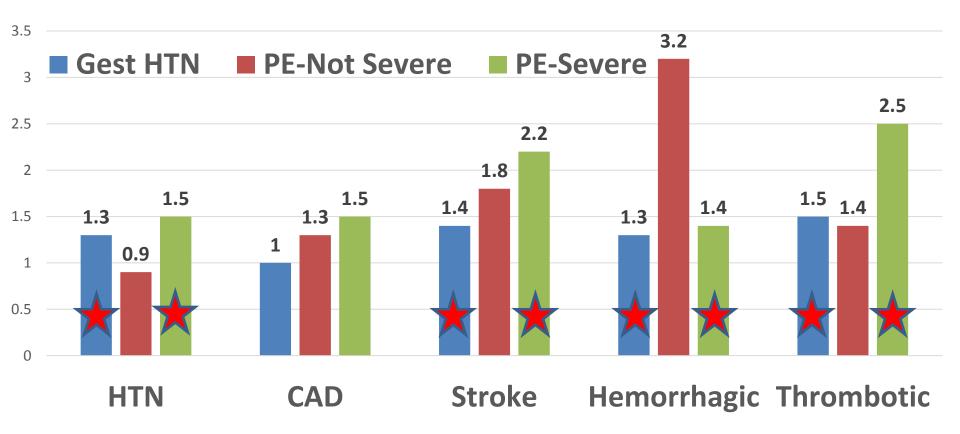
Preterm

Term

Chun S. et al. Health of children born to mothers who had preeclampsia: a population-based cohort study. AJOG 2009:201;269

Disease-Specific Hospitalizations for Term, non-SGA Children by PE Status

 Endocrine/Nutr/Meta 	b 1.6
• Dz of blood + related of	organs 1.5
 Neoplasms (Benign) 	1.4
 GU/renal 	1.3
 Circulatory 	1.3
 Nervous system 	1.3
 Infectious 	1.2
 Respiratory system 	1.2
• GI	1.2
 MS/Connective Tissue 	es 1.2
 Mental/behav Disorde 	ers 1.1
• Skin	1.1

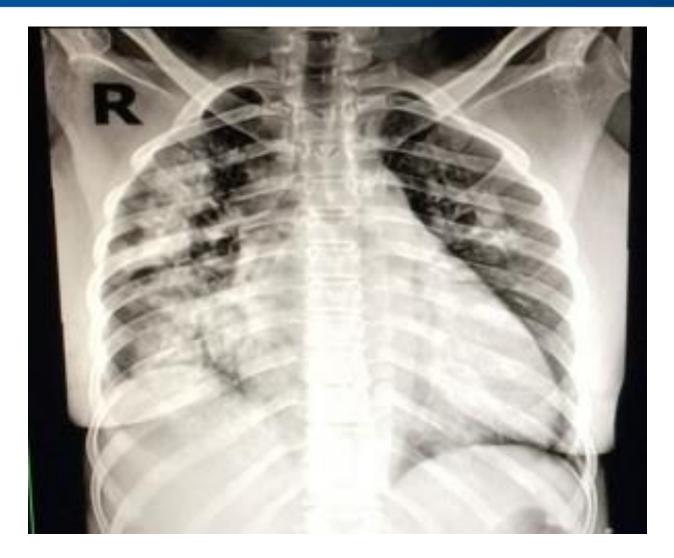

Chun S. et al. AJOG 2009:201;269

Childhood Sequelae

- Children, adolescents, young adulthood
 - Increased systolic BP
 - -Increased diastolic BP
 - -Increased BMI
 - Unclear associations
 - Lipid profiles
 - Glucose metabolism
- Consistent for genders and birth weights

Preeclampsia-Associated Risk of CV Disease in Adult Offspring of Term Births

6410 births, 1934-1944, Finland, Assessed for 1971-2003



Kajantie E, et al. Stroke 2009

Summary: Preeclampsia Sequalae

- Preeclampsia is bad
- Disease of placenta with complicated etiology vascular, inflammatory, mechanical, genetic, other components
- Prediction/prevention laudable
 - Reduces immediate morbidity
- Maternal and fetal long-term sequelae
 - Proportionate to PE severity
 - Unclear how to prevent long-term issues

- Clinical presentation
 - 38 y/o woman 7d postpartum
 - SVD after labor induction for preeclampsia
 - -4^{th} pregnancy and BMI 38 kg/m²
 - Progressive dyspnea, edema, fatigue, cough
 - Tachypnea, tachycardia, mild-moderate HTN, \pm proteinuria, low O₂ sat
 - CXR-enlarged heart, pulmonary congestion
 - Echo LV dilation and systolic dysfunction, right side enlargement, MVR, pulmonary HTN

- Described in 1849
- Definition

 Left ventricular dysfunction and development of cardiac failure without a known cause and occurring in the final month of pregnancy and up to 5 months postpartum.

- Increasing in US
 - -1:4350 births (1990s)
 - -1:2230 births (mid-2000s)
- Risk factors poorly predictive
 - Increased maternal age (x10 if >40 y/o)
 - -Black race (x5-15)
 - HTN disorders (x5-30)
 - Multifetal gestations (9% of cases)

- Causes/triggers?
 - -Hemodynamic stress
 - Viral myocarditis
 - Coxsackie, echo, parvo
 - Microchimerism-myocyte engraftment with fetal stem cells with immune dysfunction
 - Genetic factors (TTNCI, TTN, STAT3)
 - Prolactin increased cathepsin D peptidase
 - Antiangiogenic factors sFlt inhibiting VGEF

- Multiple-Hit Theory
 - -Gene mutations = susceptibility
 - High prolactin at term/postpartum cleaved by increased cathepsin D (mutation linked)
 - Prolactin fragment (vasoinhibin) myocardial toxicity
 - Exacerbated by increased sFlt

Cunningham, et al. Obstet Gynecol 2019;133:167

- Criteria for Diagnosis
 - ≤1 mo before delivery or ≤5 mo postpartum
 - No other cause identified
 - Sepsis, thyrotoxicosis, anemia, viral, etc
 - No heart Dz prior to 1 mo before delivery
 - Echo criteria
 - EF <45% and/or
 - Motion-mode fractional shortening <30%
 - LV end diastolic dimension >2.7 cm/m²
 - Cardiac MRI promising
 - Bx if transplant considered

Peripartum Cardiomyopathy Management

- High acuity unit with cardiac monitoring
- Immediate
 - Fluid management, diuresis, O₂
 - Preeclampsia Tx with magnesium sulfate if indicated
 - Medical therapies
 - Beta blocker, hydralazine/nitrates, calcium channel blockers if pregnant, ACE inhibitors or ARBs after delivery, anticoagulation
 - Bromocriptine?
- Antepartum
 - Anesthesia, fetal monitoring, vaginal delivery if stable
- Postpartum
 - Contraception, counseling, modest activity, echo 6 mos

Hibbard, et al. Obstet Gynecol 1999;94:311

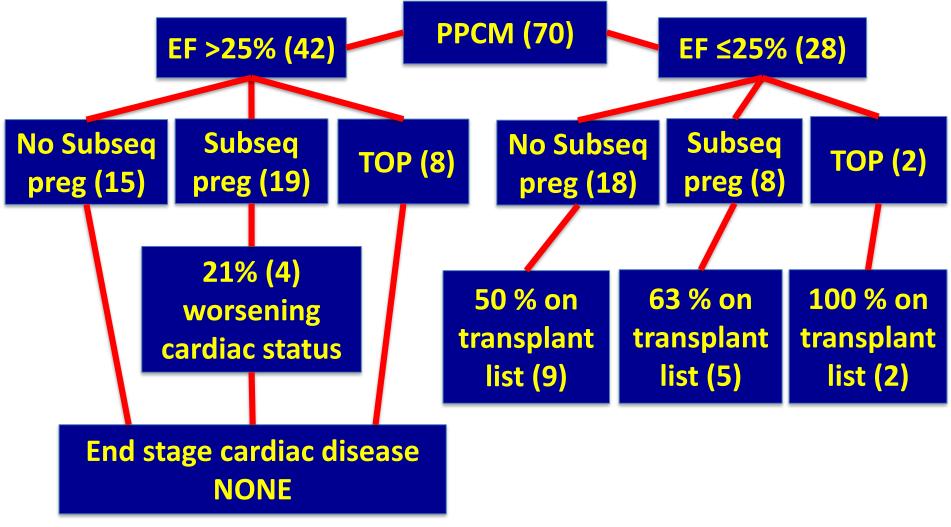
Sequelae Peripartum Cardiomyopathy

~70%

~13%

~4/16%

~7%


~10%

38% of mortality

- Ventricular function recovery (EF >50%)
- Major event or persistent EF <35%
- Most recovery by 6 months PP
- 1/8 year mortality
- Arrhythmias
 - Wearable defibrillator vest for EF <30% until recovery?
- Thromboembolism
 - Anticoagulation at least until 2 mo PP
- Transplant
 - 5% of female cardiac transplants in US occur after PPCM
- Medication duration no consensus

Arany Z, Elkayam U. Ciculation 2016;133:1397-1409.

Peripartum Cardiomyopathy 1-6 yr Follow-Up Based on Initial EF

Habli M, et al. AJOG. 2008:199:415.e1-415.e5,

Summary Peripartum Cardiomyopathy

- Serious pregnancy complication
- Serious maternal morbidity and mortality risks
- Prognosis largely based on degree of recovery
- Serious counseling needed after event

- "Anaphylactoid Syndrome of Pregnancy"
 - Sudden CV collapse
 - Altered mental status
 - DIC
- First described in 1926
- True incidence unclear (~1:15,000-50,000)

"Diagnostic waste basket" of unexplained peripartal deaths

- Maternal mortality rate ~20%
 Up to 50% of deaths in first hour
- 80% survivors neurologic damage
- <10% of cardiac arrest patients survive neurologically intact
- Neonatal outcome

–~60% survive with 50% neurologically damaged if event prior to delivery

- During labor
- During C/S
- After NSVD
- During second trimester TOP
- After amniocentesis
- After cerclage removal
- AFE has been reported to occur as late as 48 hours post delivery

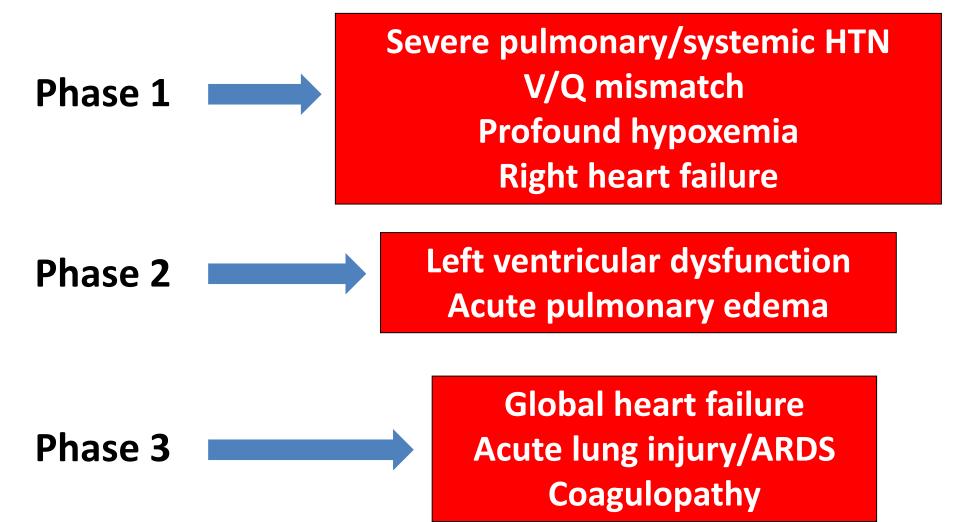
- Etiology is unknown
- Physical embolic obstruction not likely
- Exposure to fetal/amniotic fluid antigens
 - Genetic susceptibility?
 - Abnormal activation of immunologic mechanisms
 - Release of vasoactive/procoagulants
 - Stimulation of complement activation
- Systemic inflammatory response

Amniotic Fluid Embolism Risk Factors

- AMA
- Multiparity
- Meconium
- Cervical laceration
- IUFD
- Short labor
- Placenta accreta
- Polyhydramnios

- Uterine rupture
- Maternal allergy Hx
- Chorioamnionitis
- Macrosomia
- Male fetal sex
- Oxytocin (NO!)
- Tetanic contractions (NO!)

Risk factors are neither sensitive nor specific. *This condition is <u>NOT predictable nor preventable!</u>*

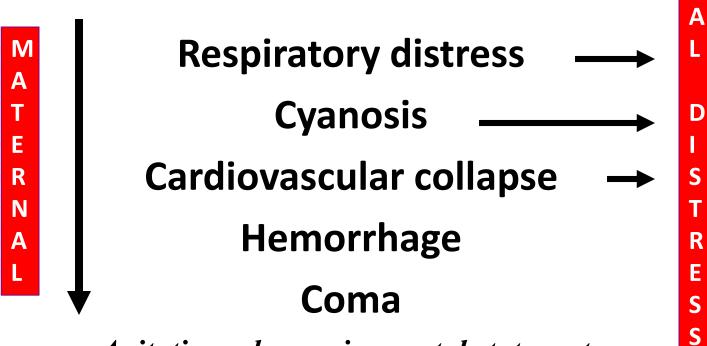

Amniotic Fluid Embolism Clinical Features

- Hypotension 100%
- Fetal distress 100%
- Pulm edema/hypoxia 93%
- Cardiopulm arrest 87%
- Cyanosis 83%
- Coagulopathy 83%
- Dyspnea 49%
- Seizure 48%

- Atony 23%
- Bronchospasm 15%
- Transient HTN 11%
- Cough 7%
- Headache 7%
- Chest pain 2%

70% present in labor

Clark S,1995



Classic symptom sequence:

P

Ε

Т

Agitation, change in mental status, etc

- Rapid deterioration limits interventions
- <u>DELIVERY!</u>
- Cardiac/pulmonary support (aggressive)
- Correct atony
- Correct coagulation abnormalities
 - Ave replacements >30 uPRBCs
 - FFP, cryoprecipitate, TXA
 - <u>Not</u> recombinant factor VIIA
 - <u>Not</u> Heparin
 - Potential Tx
 - AT III concentrates, leukotriene inhibitors, ECMO, balloon pumps, hemofiltration, plasma exchange tfn, steroids, C1 esterase inhibitors (inhibits C1 esterase, Factor XIIA, complement activation)

- Perimortem cesarean delivery:
 - After 5 minutes of unsuccessful CPR in arrested mothers, abdominal delivery is recommended
- Maternal death usually occurs due to:
 - Sudden cardiac arrest/arrhythmias
 - Hemorrhage due to coagulopathy
 - ARDS
- Risk of recurrence is unknown
 Unpredictable and <u>NOT preventable</u>

AFE and Reproductive Decisions

- 80 women with AFE had preserved fertility after delivery
 - -70% had no further children at 4 (1–18) years from the index delivery.
 - 32.5% of these women or their partners chose permanent sterilization.

Pregnancy Complication Sequelae - Other

- Selected fertility
 - Less likely to pursue subsequent pregnancy, especially if child did not survive
- Mental health
 - 44% depression after severe PE with complications
 - 11% PTSD after PE
 - Anxiety and depression common after serious pregnancy complications (mother AND family)

Geller PA. Pregnancy as a stressful life event. CNS Spectr. 2004;9:188-97

Summary

- Preeclampsia
 - Common, tricky, but can be managed appropriately to minimize risks and reduce occurrence/recurrence
- Peripartum cardiomyopathy
 - Uncommon with moderate morbidity and mortality, but can be managed
- <u>Amniotic fluid embolism</u>
 - Rare with high morbidity and mortality with few management options
- Pregnancy complications are serious and have long term consequences